Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Anal Sci ; 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2326296

ABSTRACT

With the pandemic of COVID-19, the application of quaternary ammonium compounds (QACs), which can be used in SARS-CoV-2 disinfection products, has increased substantially. QACs cumulated in sewer system are ultimately deposited and enriched in sludge. QACs in the environment can adversely affect human health and the environment. In this study, a liquid chromatography-mass spectrometry method was established for the simultaneous determination of 25 QACs in sludge samples. Ultrasonic extraction and filtration of the samples was performed using a 50 mM hydrochloric acid-methanol solution. The samples were separated by liquid chromatography and detected in multiple reaction monitoring mode. The matrix effects of the sludge on the 25 QACs ranged from - 25.5% to 7.2%. All substances showed good linearity in the range of 0.5-100 ng/mL, with all determination coefficients (R2) greater than 0.999. The method detection limits (MDLs) were 9.0 ng/g for alkyltrimethylammonium chloride (ATMAC), 3.0 ng/g for benzylalkyldimethylammonium chloride (BAC), and 3.0 ng/g for dialkyldimethylammonium chloride (DADMAC). The spiked recovery rates were in the range of 74-107%, while the relative standard deviations were in the range of 0.8-20.6%. Considering its sensitivity, accuracy, and easy operation, the proposed method in this study was used to determine 22 sludge samples collected from a comprehensive wastewater treatment plant. The results showed that the concentrations of ΣATMACs, ΣBACs, and ΣDADMACs were 19.684, 3.199, and 8.344 µg/g, respectively. The main components included ATMAC-C16, ATMAC-C18, ATMAC-C20, ATMAC-C22, BAC-C12, and DADMAC-C18:C18, with concentrations exceeding 1.0 µg/g. The concentration relationships of different components in the congeners showed that some components were of similar origin.

2.
Front Immunol ; 13: 1051576, 2022.
Article in English | MEDLINE | ID: covidwho-2237154

ABSTRACT

The development of vaccines that can efficiently prevent the infection of SARS-CoV-2 is necessary to fight the COVID-19 epidemic. mRNA vaccine has been proven to induce strong humoral and cellular immunity against SARS-CoV-2. Here, we studied the immunogenicity and protection efficacy of a novel mRNA vaccine SYS6006. High expression of mRNA molecules in 293T cells was detected. The initial and boost immunization with a 21-day interval was determined as an optimal strategy for SYS6006. Two rounds of immunization with SYS6006 were able to induce the neutralizing antibodies against the SARS-CoV-2 wild-type (WT) strain, and Delta and Omicron BA.2 variants in mice or non-human primates (NHPs). A3rd round of vaccination could further enhance the titers of neutralization against Delta and Omicron variants. In vitro ELISpot assay showed that SYS6006 could induce memory B cell and T cell immunities specifically against SARS-CoV-2 in mice. FACS analysis indicated that SYS6006 successfully induced SARS-CoV-2-specific activation of T follicular helper cell (Tfh) and Th1 cell, and did not induce CD4+Th2 response in NHPs. SYS6006 vaccine could significantly reduce the viral RNA loads and prevent lung lesions in Delta variant infected hACE2 transgenic mice. Therefore, SYS6006 could provide significant immune protection against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/prevention & control , Immunization , Mice, Transgenic
3.
Zhongguo Huanjing Kexue = China Environmental Science ; 41(8):3927, 2021.
Article in English | ProQuest Central | ID: covidwho-1498172

ABSTRACT

Based on the meteorological forecast data from the National Meteorological Bureau, this study developed an AERMOD-based pollution forecasting model for iron and steel plants, simulated air quality impacts of a typical iron and steel plant located in Hebei Province during the controlled period(from February to March in 2020) and the uncontrolled period(from April to October in 2020) of the COVID-19 epidemic, and validated the model with real monitoring air quality data. In case of adverse wind direction, the results showed that the average contribution of SO2, NOx and PM10 from the plant to three state-controlled monitoring stations were 20.19~33.81%, 17.49~23.46% and 2.02~2.69% respectively during the controlled period, and 13.43~21.01%, 11.09~20.92% and 1.20~2.22% during the uncontrolled period. The correlation coefficients between the forecast values of SO2, NOx and PM10 emission of the plant and the real monitoring values of the three state-controlled monitoring stations were higher in the controlled period(the highest values are 0.43,0.48 and 0.29, respectively, at individual monitoring station) compared with the uncontrolled period(the highest values are 0.42,0.39 and 0.07, respectively) due to the less interference from other anthropogenic emission sources during the controlled period.

SELECTION OF CITATIONS
SEARCH DETAIL